1. 2. Desember 2013 | Physics Generation
Background



Siklus Hidrologi
Siklus air atau siklus hidrologi adalah sirkulasi air yang tidak pernah berhenti dari atmosfer ke bumi dan kembali ke atmosfer melalui kondensasi, presipitasi, evaporasi dan transpirasi.
Pemanasan air laut oleh sinar matahari merupakan kunci proses siklus hidrologi tersebut dapat berjalan secara terus menerus. Air berevaporasi, kemudian jatuh sebagai presipitasi dalam bentuk hujan, salju, hujan batu, hujan es dan salju (sleet), hujan gerimis atau kabut.
Pada perjalanan menuju bumi beberapa presipitasi dapat berevaporasi kembali ke atas atau langsung jatuh yang kemudian diintersepsi oleh tanaman sebelum mencapai tanah. Setelah mencapai tanah, siklus hidrologi terus bergerak secara kontinu dalam tiga cara yang berbeda:
·  Evaporasi / transpirasi - Air yang ada di laut, di daratan, di sungai, di tanaman, dsb. kemudian akan menguap ke angkasa (atmosfer) dan kemudian akan menjadi awan. Pada keadaan jenuh uap air (awan) itu akan menjadi bintik-bintik air yang selanjutnya akan turun (precipitation) dalam bentuk hujan, salju, es.
·  Infiltrasi / Perkolasi ke dalam tanah - Air bergerak ke dalam tanah melalui celah-celah dan pori-pori tanah dan batuan menuju muka air tanah. Air dapat bergerak akibat aksi kapiler atau air dapat bergerak secara vertikal atau horizontal dibawah permukaan tanah hingga air tersebut memasuki kembali sistem air permukaan.

·  Air Permukaan - Air bergerak di atas permukaan tanah dekat dengan aliran utama dan danau; makin landai lahan dan makin sedikit pori-pori tanah, maka aliran permukaan semakin besar. Aliran permukaan tanah dapat dilihat biasanya pada daerah urban. Sungai-sungai bergabung satu sama lain dan membentuk sungai utama yang membawa seluruh air permukaan disekitar daerah aliran sungai menuju laut.


Air permukaan, baik yang mengalir maupun yang tergenang (danau, waduk, rawa), dan sebagian air bawah permukaan akan terkumpul dan mengalir membentuk sungai dan berakhir ke laut. Proses perjalanan air di daratan itu terjadi dalam komponen-komponen siklus hidrologi yang membentuk sistem Daerah Aliran Sungai (DAS). Jumlah air di bumi secara keseluruhan relatif tetap, yang berubah adalah wujud dan tempatnya. Tempat terbesar terjadi di laut.




Macam-Macam dan Tahapan Proses Siklus Air :
·  Siklus Pendek / Siklus Kecil
1. Air laut menguap menjadi uap gas karena panas matahari
2. Terjadi kondensasi dan pembentukan awan
3. Turun hujan di permukaan laut
·  Siklus Sedang
1. Air laut menguap menjadi uap gas karena panas matahari
2. Terjadi kondensasi
3. Uap bergerak oleh tiupan angin ke darat
4. Pembentukan awan
5. Turun hujan di permukaan daratan
6. Air mengalir di sungai menuju laut kembali
·  Siklus Panjang / Siklus Besar
1. Air laut menguap menjadi uap gas karena panas matahari
2. Uap air mengalami sublimasi
3. Pembentukan awan yang mengandung kristal es
4. Awan bergerak oleh tiupan angin ke darat
5. Pembentukan awan
6. Turun salju
7. Pembentukan gletser
8. Gletser mencair membentuk aliran sungai
9. Air mengalir di sungai menuju darat dan kemudian ke laut









Bagaimana Terjadinya PETIR?

 


Petir, kilat, atau halilintar adalah gejala alam yang biasanya muncul pada musim hujan di saat langit memunculkan kilatan cahaya sesaat yang menyilaukan. Beberapa saat kemudian disusul dengan suara menggelegar yang disebut guruh. Perbedaan waktu kemunculan ini disebabkan adanya perbedaan antara kecepatan suara dan kecepatan cahaya.

Petir merupakan gejala alam yang bisa kita analogikan dengan sebuah kondensator raksasa, dimana lempeng pertama adalah awan (bisa lempeng negatif atau lempeng positif) dan lempeng kedua adalah bumi (dianggap netral). Seperti yang sudah diketahui kapasitor adalah sebuah komponen pasif pada rangkaian listrik yang bisa menyimpan energi sesaat (energy storage). Petir juga dapat terjadi dari awan ke awan (intercloud), dimana salah satu awan bermuatan negatif dan awan lainnya bermuatan positif.

 

Terdapat beberapa definisi dari petir, antara lain: 
  1. Fenomena alam yang merupakan Pelepasan muatan elektrostatis yang berasal dari badai guntur
  2. Pelepasan muatan ini disertai dengan pancaran cahaya dan radiasi elektromagnetik lainnya
  3. Arus listrik yang melewati saluran pelepasan muatan tadi dengan cepat memanaskan udara dan berkembang sebagai plasma yang menimbulkan gelombang bunyi yang bergetar ( guntur ) di atmosfir
Pelepasan Muatan Elektrostatis
Arus listrik yang mengalir tiba tiba dan sangat cepat karena adanya kelebihan muatan listrik yang tersimpan pada sebuah benda yang isolator ke benda yang berbeda potensial , misalnya tanah.
Badai Guntur
Disebut juga badai listrik, merupakan suatu karakter cuaca dimana terjadi petir dan guntur, biasanya disertai dengan hujan lebat, hujan es.
Plasma
Istilah ilmu fisika, Gas yang terionisasi sehingga fase materinya berbeda dengan gas itu sendiri.
Guntur
Bunyi dari getaran gelombang yang disebabkan oleh petir yang memanaskan udara sampai 30.000 oC. Udara yang sangat panas itu mengembang dengan cepat dan mengerut ketika dingin. Proses ini menimbulkan gelombang bunyi.
Petir terjadi karena adanya perbedaan potensial antara awan dan bumi. Proses terjadinya muatan pada awan karena pergerakannya yang terus menerus secara teratur, dan selama pergerakan itu dia akan berinteraksi dengan awan lainnya sehingga muatan negative akan berkumpul pada salah satu sisi, dan muatan positif pada sisi sebaliknya. Jika perbedaan potensial antara awan dan bumi cukup besar, maka akan terjadi pembuangan muatan negatif (electron) untuk mencapai kesetimbangan. Pada proses ini, media yang dilalui electron adalah udara, dan pada saat electron mampu menembus ambang batas isolasi udara inilah akan terjadi ledakan suara yang menggelegar. Petir lebih sering terjadi pada musim hujan karena pada keadaan tersebut udara mengandung kadar air yang lebih tinggi sehingga daya isolasinya turun dan arus lebih mudah mengalir. Karena adanya awan yang bermuatan positif dan negatif, maka petir juga bisa terjadi antar awan yang berbeda muatan. Petir jenis ini dapat mengganggu aktifitas penerbangan.
Awan, pada umumnya kurang lebih mengandung listrik. Secara mekanik, thermodinamika, energi kimia diubah menjadi energi listrik dengan kutub yang terpisah. Kebanyakan petir memiliki fase waktu, antara lain:
  1. Fase Waktu Pertumbuhan, sekitar 10 - 20 menit
  2. Fase Waktu Puncak, sekitar 15 - 30 menit
  3. Fase Waktu Menghilang, sekitar 30 menit
Dalam kondisi cuaca yang normal, perbedaan potensial antara permukaan bumi dengan ionosphere adalah sekitar 200.000 sampai 500.000 Volts, dengan arus sekitar 2x10-12 Amperes/m2 . Perbedaan potensial ini diyakini memberikan kontribusi dalam distribusi badai petir (Thunderstorm) di seluruh dunia.
Pada lapisan atmosphere bertebaran gumpalan-gumpalan awan yang diantaranya terdapat awan yang bermuatan listrik. Awan bermuatan listrik tersebut terbentuk pada suatu daerah dengan persyaratan:
  1. Kondisi udara yang lembab (konsentrasi air yang banyak)
  2. Gerakan angin ke atas
  3. Terdapat inti Higroskopis
Kelembaban terjadi karena adanya pengaruh sinar matahari yang menyebabkan terjadinya penguapan air di atas permukaan tanah (daerah laut, danau). Sedangkan pergerakan udara ke atas disebabkan oleh adanya perbedaan tekanan akibat daerah yang terkena panas matahari bertekanan lebih tinggi atau karena pengaruh angin. Di samping itu terdapat Inti Higroskopis sebagai inti butir-butir air di awan akibat proses kondensasi. Ketiga unsure inilah yang diperlukan untuk menghasilkan awan guruh/awan Commulonimbus yang bermuatan negative yang karakteristiknya berbeda-beda sesuai dengan kondisi tempatnya. Muatan awan bawah yang negative akan menginduksi permukaan tanah menjadi positif maka terbentuklah medan listrik antara awan dan tanah (permukaan bumi). Semakin besar muatan yang terdapat di awan, semakin besar pula medan listrik yang terjadi dan bila kuat medan tersebut telah melebihi kuat medan tembus udara ke tanah, maka akan terjadi pelepasan muatan listrik sesuai dengan hokum kelistrikan, peristiwa inilah yang disebut petir.
Dengan letak geografis yang dilalui garis khatulistiwa, Indonesia beriklim tropis. Hal ini mengakibatkan Indonesia memiliki hari guruh rata-rata per tahun yang sangat tinggi. Oleh karena itu, dianggap perlu untuk membuat analisa jumlah rata-rata petir tahunan yang dilakukan secara berkesinambungan (Iso Kreaunik Level) yang kemudian pada gilirannya dapat digunakan sebagai acuan untuk pembuatan Hazard Map yang akan dihubungkan dengan skala resiko (Lightning Strike Intensity Based On Risk Scale).

SISTEM DETEKSI PETIR
Sistem deteksi petir yang digunakan adalah Sistem deteksi dan analisa petir secara real-time menggunakan software Lightning/2000 yang dirangkai dengan Boltek Lightning Detection System. StormTracker ini dapat mendeteksi strokes petir secara optimal sekitar 300 mil yang kemudian akan diplot secara otomatis dan real-time ke sistem, dimana semakin banyak strokes maka semaikin maksimal penentuan posisi dari sistem. StormTracker bekerja dengan mendeteksi sinyal radio yang dihasilkan oleh petir, dengan kata lain, antena StormTracker dapat memberikan informasi arah dan jarak thunderstorm yang dikalkulasikan dengan kekuatan sinyal yang diterima.
Thunderstorm, biasa juga disebut Electrical storm/ Lightning storm, adalah sebuah bentuk cuaca yang dicirikan oleh adanya kehadiran petir. Dari petir tersebut maka dapat dibuat klasifikasi dan sistem peringatan terhadap aktifitas thunderstorm. Ada dua macam alarm yang ada dalam system deteksi thunderstorm, antara lain:
  1. Close Storm Alarm, yang akan aktif jika terdapat sebuah Thunderstorm yang bergerak mendekat dari jarak sebelumnya.
  2. Severe Storm Alarm, yang akan aktif jika jumlah sambaran petir (Lightning Strikes) per menit melampaui jumlah sambaran petir sebelumnya.
Untuk mempermudah analisa, maka dibuat beberapa pengelompokan, yaitu:
  1. Berdasarkan Kekuatan Storm
    Pengelompokan berdasarkan Indeks kekuatan (Severity Index), yaitu Thundershower (0-22), thunderstorm (23-43), strong thunderstorm (44-75) dan Severe Thunderstorm (>76)
  2. Berdasarkan Jarak Storm
    Pengelompokan jarak storm dibagi menjadi 3, antara lain nearby (0-20 Km), regional (21-60 Km), dan distance (>60 Km).


Warna
Distance / Jarak
Indeks Kehebatan

Thundershower
1 - 2

Thundershower
3 - 5

Thundershower
6 - 12

Thundershower
13 - 22

Thunderstorm
23 - 36

Thunderstorm - Strong t - storm
37 - 53

Strong t - storm
54 - 79

Strong t - storm
80 - 86

Strong t - storm
87 - 97

Strong t - storm
98 - 110

Strong t - storm
≥ 111



Beberapa Gambar Petir: